Chapter 23- The Perrin Conjugate and the Laguerre Orthogonal Polynomial

The Perrin Conjugate and the Laguerre Orthogonal Polynomial

The exponential expansion of the Perrin conjugate leads to a series like the exponential generating function for the Laguerre polynomial.  This orthogonal polynomial can be used to expand any polynomial in a series of Laguerre polynomials.  A summation series has been developed for the classic orthogonal polynomials.  Integral representations are derived using the orthogonality of the Laguerre polynomial to find monomial terms of Legendre, Hermite and Chebyshev polynomials in terms of the Gamma function. Expansions can also be easily derived for these classical polynomials using the confluent hypergeometric function.  The connection of these polynomials to symmetric functions is also demonstrated.

The Perrin Conjugate and the Laguerre Orthogonal Polynomial

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s