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Expressing a q Continued Fraction in Terms of Radicals  

In Chapter 20, I was able to express the eta quotient as a function of the root  or roots of minimal 

irreducible cubic polynomials.  Some polynomials of Class number 3 could be solved from the eta 

quotient as linear functions of  , but many of the larger discriminants required a polynomial up to 

fourth or fifth order in   For example f(-907) = 𝜉3(𝜉2+𝜉−1)

8
 

where  is the root of X3 – 5X2 + X – 2 = 0.  The modulus f(-d) of the eta quotient [1] is, 

[1]     𝑓(−𝑑) =  |𝑛(𝜏2)/𝑛(𝜏1)| ∗
√2𝑎1

√2𝑎2
      

with  𝜏1 =
𝑏1+√𝑏12−4𝑎1𝑐1

2𝑎1
 and  𝜏2 =

𝑏2+√𝑏22−4𝑎2𝑐2

2𝑎2
  such that -𝑑 = 𝑏22 − 4𝑎2𝑐2 is the discriminant of a 

cubic equation. 

There is a deep connection of the modular function [1] with Ramanujan’s continued fractions and the 

geometry and symmetry of the platonic solids 1,2.  One continued fraction u() studied by Ramanujan in 

his famous notebooks3 is of interest and connects q-continued fractions to the modular function [1] and 

roots of certain polynomials of discriminant (-d). . 

 

[2] 𝑢(𝜏) = √2 ∗ 𝑞1 8⁄ ∗ ∏
(1−𝑞2𝑛−1)

(1−𝑞4𝑛−2)2
𝑛>1

=   
√2q1 8⁄

1+
q

1+q+
q2

1+q2+
q3

1+q3+
q4

1+q4+
q5

1+q5……

 

Here q = ⅇ2𝜋ⅈτ. 

It is shown in the literature that u() is an eta modular function and generally a complex number. 

[3]    𝑢(𝜏) =  √2 ∗
𝜂(𝜏)∗(𝜂(4𝜏))2

(𝜂(2𝜏))3  

Let the modulus of 𝑢(𝜏) be defined as a real number calculated from a complex number, x+iy, by 

multiplying by its conjugate x-iy; 

[4]    |𝑢(𝜏)| =  √2 ∗
𝜂(𝜏)∗(𝜂(4𝜏))2

(𝜂(2𝜏))3 * Conjugate(√2 ∗
𝜂(𝜏)∗(𝜂(4𝜏))2

(𝜂(2𝜏))3 ) 

Define U and U2 as the following conjugates, 

[5]    |𝑈| =  
𝜂(𝜏)

(𝜂(2𝜏))1* Conjugate(
𝜂(𝜏)

(𝜂(2𝜏))1) 

[6]   |𝑈2| =  √2 ∗
(𝜂(4𝜏))2

(𝜂(2𝜏))2* Conjugate(√2 ∗
(𝜂(4𝜏))2

(𝜂(2𝜏))2) 

[7]   |𝑢(𝜏)| = |𝑈2| ∗ |𝑈| 

The following relations are true in special cases for the conjugates u(), U and U2. 
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[8a,b]    |𝑈|4 ∗ |𝑈2| = 2 

  𝑈 = (
2

U2∗𝑈
)1 3⁄ = (

2

|𝑢(𝜏)|
)1 3⁄  

Where U is a root of a polynomial and an algebraic integer.  This equation can be generalized as, 

[9]    𝑈(𝜏) = (
2

|𝑢(𝜏)|
)

𝑘 3⁄

∗ 𝑄 

where k is a positive integer and Q is a real number radical or a radical fraction. Equation [9] now relates 

the modulus of the q fraction in [1] to the roots of polynomials.  These roots if expressed in radical form 

demonstrate that the q fraction for a given discriminant and values of 𝜏1 and 𝜏2  from equation [1] can 

be written as a equation of radicals. 

Proposition 1 – The modulus of the q continued fraction  𝑢(𝜏) , is expressible in radicals for negative 

discriminants 1 mod 4 and 3 mod 4 where q = ⅇ2𝜋ⅈ∗𝜏 and 𝜏 =
1+√−𝑑

4
  . Class number 3 discriminants 

except d=-23, -31 are not expressed by 𝑢(𝜏).  

From [9] we obtain; 

[10]    |𝑢(𝜏)| = 2(
𝑈(𝜏)

𝑄
)−3 𝑘⁄  

The following table shows values of k and Q for various discriminants.  U{) values are obtained either as 

roots to irreducible polynomials from Mathematica  or radical expressions from Weber 4.  

k Q 
Discriminan

t 
Radical Form of |u()| from [10] 

  − 21 4⁄  

  −  

  − 
2

(1 + √5)3 4⁄
 

  − 
1

√2
 

  − 
23 4⁄

1 + √3
 

  − 

54

(2 −
2

(17 + 3√33)1 3⁄
+ (17 + 3√33)1 3⁄ )3

 

  − 
2

(3 + √13)3 4⁄
 

  − 
√2

1 + √5
 

 √2 − 

8 ∗ 21 4⁄

(1 + √17 + √2(1 + √17))3 2⁄

 

  − 
18

((9 − √57)1 3⁄ + (9 + √57)1 3⁄ )3
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  − 
2 ∗ 21 4⁄

√3 + √7(√3 + √7)3 4⁄
 

 √2 − 
9√2

((9 − √69)1 3⁄ + (9 + √69)1 3⁄ )3
 

 √8
4

 − 21 4⁄ (−2 + √5) 

  − 
1

1 + 21 3⁄ + 22 3⁄
 

  − 
2(

3

9 + √29 +
79 + 15√29

(369 + 70√29 + 12√6(27 + 5√29))1 3⁄

+ 2(369 + 70√29 + 12√6(27 + 5√29))1 3⁄

)3 4⁄  

 √2 − 

27

√2(1 + (
1
2 (29 − 3√93))1 3⁄ + (

1
2 (29 + 3√93))1 3⁄ )3

 

  − 
21 4⁄

(6 + √37)3 4⁄
 

 √2 − 

16 ∗ 23 4⁄

(5 + √41 + √2(5 + √41) +
2

√
5 + √41

138 + 18√41 + 33√2(5 + √41) + 5√82(5 + √41)

)3 2⁄

 

  − 
54

(2 + (35 − 3√129)1 3⁄ + (35 + 3√129)1 3⁄ )3
 

 √2 − 
2 ∗ 21 4⁄

(1 + √3)3 2⁄ √13 + 3√19
 

  − 
54

(2 + (53 − 3√201)1 3⁄ + (53 + 3√201)1 3⁄ )3
 

 √2 − 

8 ∗ 21 4⁄

(9 + √97 + 3√2(9 + √97))3 2⁄

 

 (√2)13 − 
16 ∗ 21 4⁄

√√5 + √7((1 + √5)(3 + √3 + √7 + √21))3 2⁄
 

  − 
2(

2

5√7 + 3√19
)3 4⁄

(3 + √7)3 2⁄
 

  − 
54

(6 + (135 − 3√489)1 3⁄ + (3(45 + √489))1 3⁄ )3
 

 (√2)7 − 
4 ∗ 23 4⁄

(1 + √3)9 2⁄ √23 + 3√59
 

 √2 − 
2 ∗ 23 4⁄

(13 + √193 + √358 + 26√193)3 2⁄
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As an example, consider discriminant -33 = 3 mod 4.  In reference (4), Table VI the value of 𝑈(𝜏) is given. 

The Weber function (eta quotient) given as a solution is raised to the 6th power and multiplied by the 

square root of 2.  Substituting into [10]: 

    |𝑢(
1+√−33

4
)| = 2 (

(3+√11)∗(1+√3)
3

√2
)

−3 6⁄

=  0.209561644079440449499256598019 

A calculation from equation [2], u() = 0.4489937002 + 0.0892541386ⅈ.  Multiplying by the conjugate results 

in the value given above.  Rearranging the radicals shows that in exact form for d= -33,  

    |u()| =  
2∗21 4⁄

(1+√3)3 2⁄ √3+√11
 

In references (1,2) the connection of the q continued fractions to the tetrahedron, octahedron and 

icosahedron is discussed.  The q continued fraction in [2] associates with the octahedron which has 12- 

edges, 6 - (vertices) and 8 -faces.  It is interesting to note that taking the eighth power of the complex 

number u(), results in a real number which is the eighth power of |u()|! This is true for all discriminants 

mentioned in proposition 1.  It is also noted that u()8-1 times its conjugate is exactly equal to 1 in all 

cases.  The q continued fraction is said to map points  on the upper half of the complex plane to a point 

u() on the octahedron projected on the complex plane.  Symmetry properties of the octahedron 

projected (mapped) onto a sphere are then preserved when projected on the complex plane.  In 

addition, invariant properties such as the j-invariant of a polynomial with discriminant -d are also 

preserved on the octahedron. The octahedral equation [11] illustrates this symmetry; 

[11]     (𝑢(𝜏)16 + 14 ∗ 𝑢(𝜏)8 + 1)3 − (2−4) ∗ j(𝜏) ∗ (𝑢(𝜏)8 ∗ (𝑢(𝜏)8 − 1)4) = 0   

This equation is also true for all discriminants tested by proposition 1 and is only true for the complex 

values of u().    Rearranging [11] the j invariant is a ratio of two terms which are also equations of the 

octahedron defining its edges and vertices.  

Many interesting properties of the morphic numbers for discriminants -23 and -31 are retained for the q 

continued fractions |𝑢 (
1+√−23

4
 ) | and |𝑢 (

1+√−31

4
 ) |.  The plastic number 𝜓 is discussed in Chapter 19 

on the geometry of the Perrin number.  Some of these properties are shown in the expressions below. 

[12]      
1

𝜓
=  21 6⁄ |𝑢(𝜏)|1 3⁄  

[13]      (
1

𝜓
)5 =  25 6⁄ |𝑢(𝜏)|5 3⁄  

[14]      25 6⁄ |𝑢(𝜏)|5 3⁄ +  21 6⁄ |𝑢(𝜏)|1 3⁄ = 1 

[15]      (
1

𝜓
)6 =  2|𝑢(𝜏)|2 

[16]      𝜓2 =  21 6⁄ |𝑢(𝜏)|1 3⁄ + 1 

[17]      |𝑢(𝜏)| =  
(𝜓2−1)3

√2
 

I previously demonstrated how the real and complex powers of the Perrin sequence can be generated 

from 1, , 1+1/  and 2, -  , −. The resulting sequence is  
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[18]       3,0,1 +
1

𝜓5
+

1

𝜓
, 3,1 +

1

𝜓5
+

1

𝜓
, 4 +

1

𝜓5
+

1

𝜓
, 4 +

1

𝜓5
+

1

𝜓
, 5 +

2

𝜓5
+

2

𝜓
, 8 +

2

𝜓5
+

2

𝜓
, 9 +

3

𝜓5
+

3

𝜓
, 13 +

4

𝜓5
+

4

𝜓
, 17 +

5

𝜓5
+

5

𝜓
… 

There are two sequences 1, 3,1, 4, 4, 5, 8, 9, 13, 17, 22, 30….  and 1,1,2,2,3,4,5,7,9,12,16,21….    The first 

sequence is generated from the coefficients of |(1-3z)/ (1-z2 + z3)|, positive coefficients of  [OEIS 

A117374].  The second sequence are the Padovan numbers generated from 1/(1-z2 + z3) [OEIS A182097].   

Combining, the Perrin sequence is generated by |(2-3z)/ (1-z2 + z3)|.  The real root of 1 - z2 + z3 =0 is the 

negative inverse of the plastic number (-
1

𝜓
).   Using equation [10] I find that for discriminant -23, an 

algebraic number and it’s inverse result in two equivalent radical forms.  

[19]   |𝑢(𝜏)| =
(−2+22 3⁄ (25−3√69)

1 3⁄
+22 3⁄ (25+3√69)

1 3⁄
)

3

216√2
=

9√2

((9−√69)1 3⁄ +(9+√69)1 3⁄ )3  

Equation [14] specified for|𝑢 (
1+√−23

4
 ) |  can be generalized to find other polynomials and associated q 

continued fractions.  For example, 

[20]        21 6⁄ |𝑢 (
1+√−31

4
 ) |1 3⁄ + 23 6⁄ | 𝑢 (

1+√−31

4
 ) |3 3⁄ = 1 

[21]      22 3⁄ |𝑢 (
1+√−19

4
 ) |1 3⁄ −  20 6⁄ | 𝑢 (

1+√−19

4
 ) |6 3⁄ = 1 

[22]      22 3⁄ |𝑢 (
1+√−43

4
 ) |1 3⁄ +  20 6⁄ | 𝑢 (

1+√−43

4
 ) |3 3⁄ = 1 

Using Mathematica, a general q Modulus equation [23] can be developed for |z| with assigned values of 

a, b, c, and d. 

[23]       2𝑎 3⁄ |𝑧|𝑏 3⁄ + 2𝑐 6⁄ |𝑧|𝑑 3⁄ − 1 = 0 

Once z = |𝑢(𝜏)| is found an associated root of a polynomial is calculated using equation [9] and 

Mathematica will find a root approximation to a polynomial and its discriminant.  If the discriminant is 1 

or 3 mod 4 then the associated 𝑢(𝜏) is either 1 or a radical multiple of the q continued fraction in 

equation [2].  Unfortunately, simple multiplication of 𝑢(𝜏) by a radical does not guarantee that 𝑢(𝜏) is a 

root of the octahedral equation [11].  Only, equations [14] and [20]-[22] are known to result in the 

radical equaling one and 𝑢(𝜏) satisfying equation [11].   

It is desired to find conditions for which z is a real number. The associated root and polynomial will have 

a discriminant which is a multiple of a prime discriminant d.  Once this discriminant has been 

determined then the appropriate d = 
1+√−𝑑

4
  is used to find the radical R = |u(d)|/|z|. Equation [2] is 

modified by multiplying by 1/ √𝑅  and both the desired u(𝜏) and z = |u()|are obtained. Since the 

octahedral equation is not valid when equation [2] is multiplied by another number, a new value of  is 

required. The equations which are used to provide this information are the equations for the j- invariant. 

There are two equations, (1) j(𝜏) from rearranged equation [11] with the u(𝜏) obtained from a modified 

equation [2] and (2) finding the root 𝜏 from the defined equation for the j-invariant. Equation [24] 

provides this root 𝜏 in Mathematica. 

[24]      FindRoot[ ((𝜆[2,0, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)]^8 + 𝜆[3,0, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)]^8 + 𝜆[4,0, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)]^8)^3 ∗ 1728 − 

𝑗(𝜏) ∗ (54(𝜆[2,0, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)]𝜆[3,0, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)]𝜆[4,0, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)])^8)), {𝜏, (1 + √−11) 4⁄ }] 
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In this program 𝜆 is the EllipticTheta function calculated by Mathematica, 𝐸^(𝜋 ∗ ⅈ ∗ 𝜏)] is the Nome 

q(𝜏) and (1 + √−11) 4⁄  is a suggested starting point for the search of the root 𝜏 . 

The general method is outlined with examples below for four examples of a, b, c, and d.   

(a,b,c,d) = (2,1,6,3) 

Solving the q modulus equation gives z  = |𝑢(𝜏)| = 
1

4
(1 − (

2

3(−9+√93)
)1 3⁄ +

(
1

2
(−9+√93))1 3⁄

32 3⁄ ).  Substituting z 

in [9] with k=1 and Q = 1, gives the root 2.9311424637535 … 

with a root approximation for the polynomial x3 -2x2 – 8 = 0.  The discriminant d = -1984 = -26*31.  Using 

 31 = 
1+√−31

4
  , a value of |𝑢 (

1+√−31

4
 ) | is obtained from [20] and the ratio found as |

𝑢(
1+√−31

4
 )

𝑧
|/z = 2√2.  

Multiply 1/ √2√2 with equation [2] to obtain the modified 𝑢(𝜏) and |z|.  Use [11] to find the new value 

of j() and plug into [24] to locate the new value of .  In this example;  = 0.24980 … .  + 2.0538479 … ⅈ 

and the octagonal equation is solved with 𝑢(𝜏) provided by the root |z| = 0.07941804904 …  to [23]. 

As alternative, multiply z by 2√2.  Then  |𝑢(𝜏)| =
1−(

2

3(−9+√93)
)1 3⁄ +

(
1
2

(−9+√93))1 3⁄

32 3⁄

√2
 and the octagonal 

equation is solved with  = 
1+√−31

4
 . 

 

(a,b,c,d) = (2,1,10,5) 

Solving the q modulus equation gives z  = |𝑢(𝜏)| = 
1

12
(2 − 5 (

2

−11+3√69
)

1 3⁄

+ (
1

2
(−11 + 3√69))

1 3⁄

). 

Substituting z in [9] with k=1 and Q = 1, gives the root 2.6494359142 …with a root approximation for 

the polynomial x3 -4x2 – 8 = 0.  The discriminant d = -1472 = -26*23.  Using  23 = 
1+√−23

4
  , a value of 

|𝑢 (
1+√−23

4
 ) | is obtained from [14] and the ratio |

𝑢(
1+√−23

4
 )

𝑧
|/z = 2√2 is found.  Multiply 1/ √2√2 with 

equation [2] to obtain the modified 𝑢(𝜏) and |z|.  Use [11] to find the new value of j() and plug into 

[24] to locate the new value of .  In this example;  = 0.249329 … .  + 1.86086518 … ⅈ and the 

octagonal equation is solved with 𝑢(𝜏) and provided by the root |z| = 0.107539927 … to [23]. As 

alternative, multiply z by 2√2.  Then  |𝑢(𝜏)| =
2−5(

2

−11+3√69
)1 3⁄ +(

1

2
(−11+3√69))1 3⁄

3√2
 and the octagonal 

equation is solved with  = 
1+√−23

4
 . 

 

(a,b,c,d) = (6,3,18,9) 

Solving the q modulus equation gives  z  = |𝑢(𝜏)| = 
1

4
(−(

2

3(9+√93)
)1 3⁄ +

(
1

2
(9+√93))1 3⁄

32 3⁄ ). Substituting z in [9] 

with k=1 and Q = 1, gives the root 2.271776692 …with a root approximation for the polynomial x9 -8x6 – 

512 = 0.  The discriminant d = -272*39*313.  Using  31 = 
1+√−31

4
  , a value of |𝑢 (

1+√−31

4
 ) | is obtained 

from [20] and the ratio found as |
𝑢(

1+√−31

4
 )

𝑧
|/z = 

2

√
3

4−22(
2

−47+9√93
)1 3⁄ +22 3⁄ (−47+9√93)1 3⁄

.  Multiply 1/square 

root of this ratio with equation [2] to obtain the modified 𝑢(𝜏) and |z|.  Use [11] to find the new value 

of j() and plug into [24] to locate the new value of .  In this example;  = 0.249329 … .  +
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1.86086518 … ⅈ and the octagonal equation is solved with 𝑢(𝜏) and provided by the root |z| = 

0.17058195 … to [23]. As alternative, multiply z by 
2

√
3

4−22(
2

−47+9√93
)1 3⁄ +22 3⁄ (−47+9√93)1 3⁄

.  Then  |𝑢(𝜏)| =

(−2(
6

9+√93
)1 3⁄ +22 3⁄ (9+√93)1 3⁄ )√4−22(

2

−47+9√93
)1 3⁄ +22 3⁄ (−47+9√93)1 3⁄

12∗31 6⁄  and the octagonal equation is solved with 

 = 
1+√−31

4
 . 

 

(a,b,c,d) = (3,3,6,6) 

Solving the q modulus equation gives  z  = |𝑢(𝜏)| = 
1

4
(−1 + √5). Substituting z in [9] with k=1 and Q = 1, 

gives the root 1.86358501876 …with a root approximation for the polynomial x6 -4x3 – 16 = 0.  The 

discriminant d = -220*36*53.  Using  5 = 
1+√−5

4
  , a value of |𝑢 (

1+√−5

4
 ) | is obtained and the ratio found 

as |
𝑢(

1+√−5

4
 )

𝑧
|/z  =  2(1 + √5)1 4⁄ .  Multiply 1/square root of this ratio with equation [2] to obtain the 

modified 𝑢(𝜏) and |z|.  Use [11] to find the new value of j() and plug into [24] to locate the new value 

of .  In this example;  = 0.212776948 … .  + 1.18872246 … ⅈ and the octagonal equation is solved with 

𝑢(𝜏) and provided by the root |z| = 0.30901699437 … to [23]. As alternative, multiply z by 

2(1 + √5)1 4⁄ .  Then  |𝑢(𝜏)| =
1

2
(−1 + √5)(1 + √5)1 4⁄  and the octagonal equation is solved with  = 

1+√−5

4
 . 

 

The q modulus equation can also be used to find the q continued fraction for the other class number 3 

discriminants that could not be readily calculated using Proposition 1.  Extending the modulus equation 

to these discriminants requires adding extra terms to [23]. The general equation is shown in [25]; 

 

[25]      2𝑎 3⁄ |𝑧|𝑏 3⁄ + 𝑁 ∗ 2𝑐 6⁄ |𝑧|𝑑 3⁄ + 𝑀 ∗ 2𝑒 6⁄ |𝑧|𝑓 3⁄ − 𝐼 = 0 

 

Where |z| is the q modulus, a, b, c, d, e and f and N, M and I are positive or negative integers. 

 

Proposition 2 – The modulus |z| of the q continued fraction  𝑢(𝜏) , is expressible in radicals for all 

negative discriminants 1 mod 4 and 3 mod 4 where q = ⅇ2𝜋ⅈ∗𝜏. The modulus is calculated from the q 

modulus equation [25] and  is determined as described in the procedure above. The root of the 

associated polynomial is obtained from [9] with k= Q = 1. 

Let (a, b, c, d, e, f,/ N, M, I) represent the constants in [25].  There can be multiple solutions to this 

equation and each solution is considered separately.  An example is given below.   

(a, b, c, d, e, f,/ N, M, I) =(-3, 3, 2, 1, 4, -1,/ -1, 1, 5) for d = -83 

Solving the q modulus equation[25] gives two roots,  z  = |𝑢(𝜏)| = 
2

3
(7 −

10

(−46+3√249)1 3⁄ +

2(−46 + 3√249)1 3⁄ ) and 16. Substituting the first radical solution z in [9] with k=1 and Q = 1, gives the 

root 2.8311772 …with a root approximation for the polynomial x3 -2x2 -2x – 1 = 0.  The discriminant d = 

-83 is a class number 3 discriminant.  Using  83 = 
1+√−83

4
  , a value of |𝑢 (

1+√−83

4
 ) | is obtained and the 
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ratio found as |
𝑢(

1+√−83

4
 )

𝑧
|/z is calculated.  Multiply 1/square root of this ratio with equation [2] to 

obtain the modified 𝑢(𝜏) and |z|.  Use [11] to find the new value of j() and plug into [24] to locate the 

new value of .  In this example;  = 0.250004024 … .  + 1.98757645 … ⅈ and the octagonal equation is 

solved with 𝑢(𝜏) and provided by the root |z| = 0.08813102796 … to [25].   Following the same 

procedure for the second solution of 16;  = −0.250000438 … .  + 2.206356 … ⅈ and the octagonal 

equation is solved with 𝑢(𝜏) and provided by the root |z| = 16 to [25]. The procedure shows however 

that 1/ |𝑢(−0.250000438 … .  +2.206356 … ⅈ )| = 16. The reason for the inverse is currently unknown 

since the root |z| = 16 and not 1/16 satisfies [25]. The reflection of  across the imaginary axis appears 

to invert the root. 

 

As another example the representation for d= -907 which was mentioned at the beginning of this 

chapter is 

 (3, 3, -1, 1, 1, -1,/ 9, -2, -3).  The one solution obtained is shown in [26] with its calculated  value. 

 

[26]     |𝑢(0.2500000069964675  + 3.027035522597698ⅈ)| =  
1

12
(−17 −

2495

(66943+2712√2721)1 3⁄ + (66943 + 2712√2721)1 3⁄ ) 

 

Substituting this result into [9] with k=Q=1, results in the real root of x3-5x2+x-2 = 0 as expected. Note 

that for class 3 discriminants the ratios found above cannot be converted to simple radical form using  
1+√−𝑑

4
 (see next section below). A cusp appears about the discriminant 

1+√−𝑑

4
 . It is also noted that u()8-

1 times its conjugate is not exactly equal to 1 unless the discriminant is exactly 
1+√−𝑑

4
 .   

 

As found in these 5 examples the calculated value for  remains in the upper complex plane and maps 

𝑢(𝜏) to the octahedron projected on the complex plane.  It would be interesting to find if a rotational 

matrix exists to transform the complex quadratic fields   
1+√−𝑑

4
 to the value found for .  Mathematica 

provides the tools to express the q modulus equation from the octic q continued fraction in radical form 

for a variety of quadratic fields. 

 

Irreducible polynomials and Adjunction 

In the analysis above, many of the roots to | 𝑢(𝜏) | and its associated root 𝑈(𝜏)  from equation [9] 

above are roots of polynomials with order n < 5.  In many cases as shown in the Table above, radical 

solutions can be found.  Except for d= -23 and d= -31 the class number 3 discriminants resulted in values 

of | 𝑢 (
1+√−𝑑

4
) | which could not be roots of a polynomial of order less than 5 for any value of k and Q. 

However, we know that all the class number 3 discriminants are cubic polynomials.   For this reason, a 

numerical method was used to find the nome q for which the value of | 𝑢 (
1+√−𝑑

4
) | could be found in 

radical notation for a known irreducible polynomial.  The result as demonstrated in equation [26] for d = 

-907 showed that the quadratic needed to solve | 𝑢 (
1+√−907

4
) | was not 

1+√−907

4
 but the complex 

number 0.2500000069964675. .  + 3.027035522597698. . ⅈ.  This resulted in the root of the correct irreducible 

polynomial but does not provide the true value for  𝑢 (
1+√−907

4
) and its modulus. (The value of the LHS 
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of equation [26] is 0.0172195640049 … but| 𝑢 (
1+√−907

4
) | = 0.000014613695463.. a 1200- fold difference in 

value! 

 

As indicated above we seek a radical form of | 𝑢(𝜏) | for which the complex number u()8-1 times its 

conjugate is exactly unity.  In many cases this is difficult if the value of U is a root of a polynomial of 

order >4 and the polynomial is irreducible. This is expressed by the Abel-Ruffini theorem that the 

general polynomial of degree n greater or equal to 5 is not solvable by radicals. But, discriminants of 

class number 3 and many other discriminants result in orders > 5 which can be solved by radicals!  This 

was known in Weber’s time and many of his entries in Table VI of his treatise demonstrate this.   

The Abel-Ruffini theorem applies to general polynomials with rational constant coefficients.  In most 

cases these coefficients are integers and the polynomial cannot be reduced to a product of polynomials 

of lesser order.  In this situation we are dealing with an integral domain of characteristic 0 and not of a 

prime p so mx=0 only if m = 0 for all integers x.  If the field of coefficients is extended by a radical field, 

then any radical subfield containing the integer coefficients (squares) can be divided by the radical field.  

We indicate this by allowing radical coefficients to a general (monic) polynomial xn + r1x(n-1) +….. rn = 0.  

The x values are said to be algebraic integers over this field containing rn.  The splitting of the polynomial 

into multiple rational polynomials by the adjunction of a radical √𝑅 may provide a solution to 

polynomials of order greater than 5.  

Example d = -65. 

A calculation of | 𝑢 (
1+√−65

4
) | from equation [2] results in an algebraic integer which is a root 

approximation to an order 35 polynomial according to Mathematica. Using equation [9] above with k = 2 

and Q = 1/√2  the resulting value U is a root of the polynomial 1 − 8x + 12x2 + 8x3 − 27x4 + 8x5 + 12x6 −

8x7 + x8 = 0.  This polynomial is irreducible in the integers.  We seek a splitting field that can split the 

equation into a product of two fourth order equation.  The numerical solutions provided by 

Mathematica are four real solutions z1 =U, z2, z3 and z4 and two complex solutions with their conjugates.  

It is found by trial and error that  

[27]    (z- z1)* (z- z2)* (z- z3)* (z- z4) = z4 –  4z3 - r1z2 –  4z – 1  =  z4 –  4z3 –  (2 + √65) z2 –  4z – 1 

This fourth order equation can be solved to provide a radical solution to the root U.  Substituting this 

root into [10] gives the desired result: 

[28]    | 𝑢 (
1+√−65

4
) | = 

2∗23 4⁄

(2+√8+√65+
√(2072+257√65)(4+√8+√65)

(8+√65)5 4⁄ )3 2⁄

 

The method can be used to add missing values to Weber’s Table in reference 4.  For discriminants 1 and 

3 mod 4 less than 100, all but four discriminants can be solved.  Alternate methods or further research 

on d = 47, 71,79 and 89 is required.  Although 47 and 71 are listed in Weber’s table, the 5th order and 7th 

order polynomials, respectively could not be reduced.  The two discriminants 79 and 89 are polynomials 

of order 5 and 12 respectively. 
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For class number 3 discriminants the resulting U are always roots to a ninth order polynomial.  

Unfortunately, the radical solutions are quite unwieldy but accurate.  I close this chalkboard with an 

example. 

Example d = -59. 

A calculation of | 𝑢 (
1+√−59

4
) | from equation [2] results in an algebraic integer which is a root 

approximation to an order 9 polynomial according to Mathematica. Using equation [9] above with k = 1 

and Q = 1 (these values are used for all class number 3 discriminants) the resulting value U is a root of 

the polynomial 

 −8 + 16x − 8x2 + 4x3 − 8x4 + 4x5 − 2x6 + 4x7 − 4x8 + x9 = 0.  This polynomial is irreducible in the integers.  

We seek a splitting field that can split the equation into a product with a third order equation.  The 

numerical solutions provided by Mathematica are one real solutions z1 =U, and four complex solutions 

z2, z4, z6 and z8 with their conjugates z3, z5, z7 and z9.  It is found by trial and error that  

[29]     (z- z1)* (z- z6)* (z- z7) = z3 - r1z2 +  r2z – 2   

This third order equation can be solved to provide a radical solution to the root U once a radical form for 

r1 and r2 are found. These numbers always are solutions to another third order equation.  I find r1 = 

root[−16 − 4𝑥 − 4x2 + x3]  and r2 = root[−8 − 4x2 + x3]   Substituting the root U in radical form into 

[10] gives the desired result in nested radical form: 

[30]    | 𝑢 (
1+√−59

4
) | =  

 

 

with 

  𝑅 = (43 − 3√177)   𝑆 = (43 + 3√177)  𝑇 = (44 − 3√177)   𝑉 = (44 + 3√177)   

  𝑊 = (3485 − 261√177)   𝑋 = (3485 + 261√177)    𝑌 = (299 − 3√177)   𝑍 = (299 + 3√177) 

All class number 3 discriminants are solvable by the equations used in this example.   
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