Expressing a q Continued Fraction in Terms of Radicals

In Chapter 20, I was able to express the eta quotient as a function of the root ξ or roots of minimal irreducible cubic polynomials. Some polynomials of Class number 3 could be solved from the eta quotient as linear functions of ξ, but many of the larger discriminants required a polynomial up to fourth or fifth order in ξ. For example $f(-907)=\frac{\xi^{3}\left(\xi^{2}+\xi-1\right)}{8}$ where ξ is the root of $X^{3}-5 X^{2}+X-2=0$. The modulus $f(-d)$ of the eta quotient [1] is,

$$
\begin{equation*}
f(-d)=|n(\tau 2) / n(\tau 1)| * \frac{\sqrt{2 a 1}}{\sqrt{2 a 2}} \tag{1}
\end{equation*}
$$

with $\tau 1=\frac{b 1+\sqrt{b 1^{2}-4 a 1 c 1}}{2 a 1}$ and $\tau 2=\frac{b 2+\sqrt{b 2^{2}-4 a 2 c 2}}{2 a 2}$ such that $-d=b 2^{2}-4 a 2 c 2$ is the discriminant of a cubic equation.

There is a deep connection of the modular function [1] with Ramanujan's continued fractions and the geometry and symmetry of the platonic solids ${ }^{1,2}$. One continued fraction $\mathbf{u}(\tau)$ studied by Ramanujan in his famous notebooks ${ }^{3}$ is of interest and connects q-continued fractions to the modular function [1] and roots of certain polynomials of discriminant (-d). .

$$
\begin{equation*}
u(\tau)=\sqrt{2} * q^{1 / 8} * \prod_{n>1} \frac{\left(1-q^{2 n-1}\right)}{\left(1-q^{4 n-2}\right)^{2}}=\frac{\sqrt{2} q^{1 / 8}}{1+\frac{\mathrm{q}}{1+\mathrm{q}+\frac{\mathrm{q}^{2}}{1+\mathrm{q}^{2}+\frac{\mathrm{q}^{3}}{1+\mathrm{q}^{3}+\frac{\mathrm{q}^{4}}{1+\mathrm{q}^{4}+\frac{\mathrm{q}^{5}}{1+\mathrm{q}^{5} \ldots \ldots . .}}}}}} \tag{2}
\end{equation*}
$$

Here $\mathrm{q}=e^{2 \pi \mathrm{it} \tau}$.
It is shown in the literature that $\mathbf{u}(\tau)$ is an eta modular function and generally a complex number.

$$
\begin{equation*}
u(\tau)=\sqrt{2} * \frac{\eta(\tau) *(\eta(4 \tau))^{2}}{(\eta(2 \tau))^{3}} \tag{3}
\end{equation*}
$$

Let the modulus of $u(\tau)$ be defined as a real number calculated from a complex number, $x+i y$, by multiplying by its conjugate x-iy;

$$
\begin{equation*}
|u(\tau)|=\sqrt{2} * \frac{\eta(\tau) *(\eta(4 \tau))^{2}}{(\eta(2 \tau))^{3}} * \text { Conjugate }\left(\sqrt{2} * \frac{\eta(\tau) *(\eta(4 \tau))^{2}}{(\eta(2 \tau))^{3}}\right) \tag{4}
\end{equation*}
$$

Define U and $U 2$ as the following conjugates,

$$
\begin{equation*}
|U|=\frac{\eta(\tau)}{(\eta(2 \tau))^{1}} * \text { Conjugate }\left(\frac{\eta(\tau)}{(\eta(2 \tau))^{1}}\right) \tag{5}
\end{equation*}
$$

[6]

$$
|U 2|=\sqrt{2} * \frac{(\eta(4 \tau))^{2}}{(\eta(2 \tau))^{2}} * \text { Conjugate }\left(\sqrt{2} * \frac{(\eta(4 \tau))^{2}}{(\eta(2 \tau))^{2}}\right)
$$

$$
\begin{equation*}
|u(\tau)|=|U 2| *|U| \tag{7}
\end{equation*}
$$

The following relations are true in special cases for the conjugates $u(\tau), U$ and $U 2$.
[8a,b]

$$
\begin{aligned}
& |U|^{4} *|U 2|=2 \\
& U=\left(\frac{2}{U 2 * U}\right)^{1 / 3}=\left(\frac{2}{|u(\tau)|}\right)^{1 / 3}
\end{aligned}
$$

Where U is a root of a polynomial and an algebraic integer. This equation can be generalized as,

$$
\begin{equation*}
U(\tau)=\left(\frac{2}{|u(\tau)|}\right)^{k / 3} * Q \tag{9}
\end{equation*}
$$

where k is a positive integer and Q is a real number radical or a radical fraction. Equation [9] now relates the modulus of the q fraction in [1] to the roots of polynomials. These roots if expressed in radical form demonstrate that the q fraction for a given discriminant and values of $\tau 1$ and $\tau 2$ from equation [1] can be written as a equation of radicals.

Proposition 1 - The modulus of the q continued fraction $u(\tau)$, is expressible in radicals for negative discriminants $1 \bmod 4$ and $3 \bmod 4$ where $q=e^{2 \pi i * \tau}$ and $\tau=\frac{1+\sqrt{-d}}{4}$. Class number 3 discriminants except $d=-23,-31$ are not expressed by $u(\tau)$.

From [9] we obtain;
[10]

$$
|u(\tau)|=2\left(\frac{U(\tau)}{Q}\right)^{-3 / k}
$$

The following table shows values of k and Q for various discriminants. $U\{\tau)$ values are obtained either as roots to irreducible polynomials from Mathematica or radical expressions from Weber ${ }^{4}$.

k	Q	Discriminan t	Radical Form of $\|\mathrm{u}(\tau)\|$ from [10]
1	1	-1	$\frac{2^{1 / 4}}{1}$
1	1	-3	$\frac{2}{(1+\sqrt{5})^{3 / 4}}$
4	1	-5	$\frac{1}{\sqrt{2}}$
1	$1 / 2$	-7	$\frac{2^{3 / 4}}{1+\sqrt{3}}$
3	1	-9	$\frac{54}{\left(2-\frac{2}{\left.(17+3 \sqrt{33})^{1 / 3}+(17+3 \sqrt{33})^{1 / 3}\right)^{3}}\right.} \frac{2}{(3+\sqrt{13})^{3 / 4}}$
1	1	-11	$\frac{\sqrt{2}}{1+\sqrt{5}}$
4	1	-13	$\frac{8 * 2^{1 / 4}}{\left(1+\sqrt{17}+\sqrt{2(1+\sqrt{17}))^{3 / 2}}\right.}$
3	1	-15	$\frac{18}{\left.(9-\sqrt{57})^{1 / 3}+(9+\sqrt{57})^{1 / 3}\right)^{3}}$
2	$1 / \sqrt{2}$	-17	-19

12	2	-21	
			$\frac{2 * 2^{1 / 4}}{\sqrt{3+\sqrt{7}}(\sqrt{3}+\sqrt{7})^{3 / 4}}$
1	$1 / \sqrt{2}$	-23	$\frac{9 \sqrt{2}}{\left((9-\sqrt{69})^{1 / 3}+(9+\sqrt{69})^{1 / 3}\right)^{3}}$
1	$\sqrt[4]{8}$	-25	$2^{1 / 4}(-2+\sqrt{5})$
3	1/2	-27	$\frac{1}{1+2^{1 / 3}+2^{2 / 3}}$
4	1/2	-29	$2\left(\frac{79+15 \sqrt{29}}{9+\sqrt{29}+\frac{3}{(369+70 \sqrt{29}+12 \sqrt{6(27+5 \sqrt{29})})^{1 / 3}}+2(369+70 \sqrt{29}+12 \sqrt{6(27+5 \sqrt{29})})^{1 / 3}}\right)^{3}$
1	$1 / \sqrt{2}$	-31	$\frac{27}{\sqrt{2}\left(1+\left(\frac{1}{2}(29-3 \sqrt{93})\right)^{1 / 3}+\left(\frac{1}{2}(29+3 \sqrt{93})\right)^{1 / 3}\right)^{3}}$
4	1	-37	$\frac{2^{1 / 4}}{(6+\sqrt{37})^{3 / 4}}$
2	$1 / \sqrt{2}$	-41	$\left(5+\sqrt{41}+\sqrt{2(5+\sqrt{41})}+\frac{2}{\left.\sqrt{\frac{5+\sqrt{41}}{138+18 \sqrt{41}+33 \sqrt{2(5+\sqrt{41})}+5 \sqrt{82(5+\sqrt{41})}}}\right)^{3 / 2}}\right.$
1	1	-43	$\frac{54}{\left(2+(35-3 \sqrt{129})^{1 / 3}+(35+3 \sqrt{129})^{1 / 3}\right)^{3}}$
6	$\sqrt{2}$	-57	$\frac{2 * 2^{1 / 4}}{(1+\sqrt{3})^{3 / 2} \sqrt{13+3 \sqrt{19}}}$
1	1	-67	$\frac{54}{\left(2+(53-3 \sqrt{201})^{1 / 3}+(53+3 \sqrt{201})^{1 / 3}\right)^{3}}$
2	$1 / \sqrt{2}$	-97	$\frac{8 * 2^{1 / 4}}{(9+\sqrt{97}+3 \sqrt{2(9+\sqrt{97})})^{3 / 2}}$
6	$(\sqrt{2})^{13}$	-105	$\frac{16 * 2^{1 / 4}}{\sqrt{\sqrt{5}+\sqrt{7}}((1+\sqrt{5})(3+\sqrt{3}+\sqrt{7}+\sqrt{21}))^{3 / 2}}$
4	2	-133	$\frac{2\left(\frac{2}{5 \sqrt{7}+3 \sqrt{19}}\right)^{3 / 4}}{(3+\sqrt{7})^{3 / 2}}$
1	1	-163	$\frac{54}{\left(6+(135-3 \sqrt{489})^{1 / 3}+(3(45+\sqrt{489}))^{1 / 3}\right)^{3}}$
6	$(\sqrt{2})^{7}$	-177	$\frac{4 * 2^{3 / 4}}{(1+\sqrt{3})^{9 / 2} \sqrt{23+3 \sqrt{59}}}$
1	$1 / \sqrt{2}$	-193	$\frac{2 * 2^{3 / 4}}{(13+\sqrt{193}+\sqrt{358+26 \sqrt{193}})^{3 / 2}}$

As an example, consider discriminant $-33=3 \bmod 4$. In reference (4), Table VI the value of $U(\tau)$ is given. The Weber function (eta quotient) given as a solution is raised to the $6^{\text {th }}$ power and multiplied by the square root of 2 . Substituting into [10]:

$$
\left|u\left(\frac{1+\sqrt{-33}}{4}\right)\right|=2\left(\frac{(3+\sqrt{11}) *(1+\sqrt{3})^{3}}{\sqrt{2}}\right)^{-3 / 6}=0.209561644079440449499256598019
$$

A calculation from equation $[2], \mathrm{u}(\tau)=0.4489937002+0.0892541386 i$. Multiplying by the conjugate results in the value given above. Rearranging the radicals shows that in exact form for $\mathrm{d}=-33$,

$$
|u(\tau)|=\frac{2 * 2^{1 / 4}}{(1+\sqrt{3})^{3 / 2} \sqrt{3+\sqrt{11}}}
$$

In references $(1,2)$ the connection of the q continued fractions to the tetrahedron, octahedron and icosahedron is discussed. The q continued fraction in [2] associates with the octahedron which has 12edges, 6 - (vertices) and 8 -faces. It is interesting to note that taking the eighth power of the complex number $u(\tau)$, results in a real number which is the eighth power of $|u(\tau)|!$ This is true for all discriminants mentioned in proposition 1. It is also noted that $u(\tau)^{8}-1$ times its conjugate is exactly equal to 1 in all cases. The q continued fraction is said to map points τ on the upper half of the complex plane to a point $u(\tau)$ on the octahedron projected on the complex plane. Symmetry properties of the octahedron projected (mapped) onto a sphere are then preserved when projected on the complex plane. In addition, invariant properties such as the j-invariant of a polynomial with discriminant -d are also preserved on the octahedron. The octahedral equation [11] illustrates this symmetry;

$$
\begin{equation*}
\left(u(\tau)^{16}+14 * u(\tau)^{8}+1\right)^{3}-\left(2^{-4}\right) * \mathrm{j}(\tau) *\left(u(\tau)^{8} *\left(u(\tau)^{8}-1\right)^{4}\right)=0 \tag{11}
\end{equation*}
$$

This equation is also true for all discriminants tested by proposition 1 and is only true for the complex values of $u(\tau)$. Rearranging [11] the j invariant is a ratio of two terms which are also equations of the octahedron defining its edges and vertices.

Many interesting properties of the morphic numbers for discriminants -23 and -31 are retained for the q continued fractions $\left|u\left(\frac{1+\sqrt{-23}}{4}\right)\right|$ and $\left|u\left(\frac{1+\sqrt{-31}}{4}\right)\right|$. The plastic number ψ is discussed in Chapter 19 on the geometry of the Perrin number. Some of these properties are shown in the expressions below.

$$
\begin{align*}
& \frac{1}{\psi}=2^{1 / 6}|u(\tau)|^{1 / 3} \tag{12}\\
& \left(\frac{1}{\psi}\right)^{5}=2^{5 / 6}|u(\tau)|^{5 / 3} \tag{13}\\
& 2^{5 / 6}|u(\tau)|^{5 / 3}+2^{1 / 6}|u(\tau)|^{1 / 3}=1
\end{align*}
$$

$$
\left(\frac{1}{\psi}\right)^{6}=2|u(\tau)|^{2}
$$

$$
\begin{equation*}
\psi^{2}=2^{1 / 6}|u(\tau)|^{1 / 3}+1 \tag{16}
\end{equation*}
$$

$$
|u(\tau)|=\frac{\left(\psi^{2}-1\right)^{3}}{\sqrt{2}}
$$

I previously demonstrated how the real and complex powers of the Perrin sequence can be generated from $1, \psi, 1+1 / \psi$ and $2,-\psi, \psi^{-5}$. The resulting sequence is

$$
\begin{equation*}
3,0,1+\frac{1}{\psi^{5}}+\frac{1}{\psi}, 3,1+\frac{1}{\psi^{5}}+\frac{1}{\psi}, 4+\frac{1}{\psi^{5}}+\frac{1}{\psi}, 4+\frac{1}{\psi^{5}}+\frac{1}{\psi}, 5+\frac{2}{\psi^{5}}+\frac{2}{\psi}, 8+\frac{2}{\psi^{5}}+\frac{2}{\psi}, 9+\frac{3}{\psi^{5}}+\frac{3}{\psi}, 13+\frac{4}{\psi^{5}}+\frac{4}{\psi}, 17+\frac{5}{\psi^{5}}+\frac{5}{\psi} \ldots \tag{18}
\end{equation*}
$$

There are two sequences $1,3,1,4,4,5,8,9,13,17,22,30 \ldots$. and $1,1,2,2,3,4,5,7,9,12,16,21 \ldots$. The first sequence is generated from the coefficients of $\left|(1-3 z) /\left(1-z^{2}+z^{3}\right)\right|$, positive coefficients of [OEIS A117374]. The second sequence are the Padovan numbers generated from $1 /\left(1-z^{2}+z^{3}\right)$ [OEIS A182097]. Combining, the Perrin sequence is generated by $\left|(2-3 z) /\left(1-z^{2}+z^{3}\right)\right|$. The real root of $1-z^{2}+z^{3}=0$ is the negative inverse of the plastic number $\left(-\frac{1}{\psi}\right)$. Using equation [10] I find that for discriminant -23 , an algebraic number and it's inverse result in two equivalent radical forms.

$$
\begin{equation*}
|u(\tau)|=\frac{\left(-2+2^{2 / 3}(25-3 \sqrt{69})^{1 / 3}+2^{2 / 3}(25+3 \sqrt{69})^{1 / 3}\right)^{3}}{216 \sqrt{2}}=\frac{9 \sqrt{2}}{\left((9-\sqrt{69})^{1 / 3}+(9+\sqrt{69})^{1 / 3}\right)^{3}} \tag{19}
\end{equation*}
$$

Equation [14] specified for $\left|u\left(\frac{1+\sqrt{-23}}{4}\right)\right|$ can be generalized to find other polynomials and associated q continued fractions. For example,

$$
\begin{align*}
& 2^{1 / 6}\left|u\left(\frac{1+\sqrt{-31}}{4}\right)\right|^{1 / 3}+2^{3 / 6}\left|u\left(\frac{1+\sqrt{-31}}{4}\right)\right|^{3 / 3}=1 \tag{20}\\
& 2^{2 / 3}\left|u\left(\frac{1+\sqrt{-19}}{4}\right)\right|^{1 / 3}-2^{0 / 6}\left|u\left(\frac{1+\sqrt{-19}}{4}\right)\right|^{6 / 3}=1 \tag{21}\\
& 2^{2 / 3}\left|u\left(\frac{1+\sqrt{-43}}{4}\right)\right|^{1 / 3}+2^{0 / 6}\left|u\left(\frac{1+\sqrt{-43}}{4}\right)\right|^{3 / 3}=1 \tag{22}
\end{align*}
$$

Using Mathematica, a general q Modulus equation [23] can be developed for $|z|$ with assigned values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d.

$$
\begin{equation*}
2^{a / 3}|z|^{b / 3}+2^{c / 6}|z|^{d / 3}-1=0 \tag{23}
\end{equation*}
$$

Once $z=|u(\tau)|$ is found an associated root of a polynomial is calculated using equation [9] and Mathematica will find a root approximation to a polynomial and its discriminant. If the discriminant is 1 or $3 \bmod 4$ then the associated $u(\tau)$ is either 1 or a radical multiple of the q continued fraction in equation [2]. Unfortunately, simple multiplication of $u(\tau)$ by a radical does not guarantee that $u(\tau)$ is a root of the octahedral equation [11]. Only, equations [14] and [20]-[22] are known to result in the radical equaling one and $u(\tau)$ satisfying equation [11].

It is desired to find conditions for which z is a real number. The associated root and polynomial will have a discriminant which is a multiple of a prime discriminant d. Once this discriminant has been determined then the appropriate $\tau_{d}=\frac{1+\sqrt{-d}}{4}$ is used to find the radical $R=\left|u\left(\tau_{d}\right)\right| /|z|$. Equation [2] is modified by multiplying by $1 / \sqrt{R}$ and both the desired $u(\tau)$ and $z=|u(\tau)|$ are obtained. Since the octahedral equation is not valid when equation [2] is multiplied by another number, a new value of τ is required. The equations which are used to provide this information are the equations for the j - invariant. There are two equations, (1) $\mathrm{j}(\tau)$ from rearranged equation [11] with the $\mathrm{u}(\tau)$ obtained from a modified equation [2] and (2) finding the root τ from the defined equation for the j-invariant. Equation [24] provides this root τ in Mathematica.

$$
\begin{gather*}
\text { FindRoot }\left[\left(\left(\lambda\left[2,0, E^{\wedge}(\pi * i * \tau)\right]^{\wedge} 8+\lambda\left[3,0, E^{\wedge}(\pi * i * \tau)\right]^{\wedge} 8+\lambda\left[4,0, E^{\wedge}(\pi * i * \tau)\right]^{\wedge} 8\right)^{\wedge} 3 * 1728-\right.\right. \tag{24}\\
\left.\left.j(\tau) *\left(54\left(\lambda\left[2,0, E^{\wedge}(\pi * i * \tau)\right] \lambda\left[3,0, E^{\wedge}(\pi * i * \tau)\right] \lambda\left[4,0, E^{\wedge}(\pi * i * \tau)\right]\right)^{\wedge} 8\right)\right),\{\tau,(1+\sqrt{-11}) / 4\}\right]
\end{gather*}
$$

In this program λ is the EllipticTheta function calculated by Mathematica, $\left.E^{\wedge}(\pi * i * \tau)\right]$ is the Nome $\mathrm{q}(\tau)$ and $(1+\sqrt{-11}) / 4$ is a suggested starting point for the search of the root τ.
The general method is outlined with examples below for four examples of a, b, c, and d.
$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(2,1,6,3)$
Solving the q modulus equation gives $z=|u(\tau)|=\frac{1}{4}\left(1-\left(\frac{2}{3(-9+\sqrt{93})}\right)^{1 / 3}+\frac{\left(\frac{1}{2}(-9+\sqrt{93})\right)^{1 / 3}}{3^{2 / 3}}\right)$. Substituting z in [9] with $\mathrm{k}=1$ and $\mathrm{Q}=1$, gives the root 2.9311424637535 ...
with a root approximation for the polynomial $x^{3}-2 x^{2}-8=0$. The discriminant $d=-1984=-2^{6 *} 31$. Using $\tau_{31}=\frac{1+\sqrt{-31}}{4}$, a value of $\left|u\left(\frac{1+\sqrt{-31}}{4}\right)\right|$ is obtained from [20] and the ratio found as $\left|\frac{u\left(\frac{1+\sqrt{-31}}{4}\right)}{z}\right| / z=2 \sqrt{2}$. Multiply $1 / \sqrt{2 \sqrt{2}}$ with equation [2] to obtain the modified $u(\tau)$ and $|z|$. Use [11] to find the new value of $\mathrm{j}(\tau)$ and plug into [24] to locate the new value of τ. In this example; $\tau=0.24980 \ldots+2.0538479 \ldots i$ and the octagonal equation is solved with $u(\tau)$ provided by the root $|z|=0.07941804904 \ldots$ to [23].
As alternative, multiply z by $2 \sqrt{2}$. Then $|u(\tau)|=\frac{1-\left(\frac{2}{3(-9+\sqrt{933}}\right)^{1 / 3}}{\sqrt{2} \frac{\left.\frac{1}{2}(-9+\sqrt{93})\right)^{1 / 3}}{3^{2 / 3}}}$ and the octagonal equation is solved with $\tau=\frac{1+\sqrt{-31}}{4}$.
$(a, b, c, d)=(2,1,10,5)$
Solving the q modulus equation gives $z=|u(\tau)|=\frac{1}{12}\left(2-5\left(\frac{2}{-11+3 \sqrt{69}}\right)^{1 / 3}+\left(\frac{1}{2}(-11+3 \sqrt{69})\right)^{1 / 3}\right)$. Substituting z in [9] with $\mathrm{k}=1$ and $\mathrm{Q}=1$, gives the root $2.6494359142 \ldots$ with a root approximation for the polynomial $x^{3}-4 x^{2}-8=0$. The discriminant $d=-1472=-2^{6 *} 23$. Using $\tau_{23}=\frac{1+\sqrt{-23}}{4}$, a value of $\left|u\left(\frac{1+\sqrt{-23}}{4}\right)\right|$ is obtained from [14] and the ratio $\left|\frac{u\left(\frac{1+\sqrt{-23}}{4}\right)}{z}\right| / z=2 \sqrt{2}$ is found. Multiply $1 / \sqrt{2 \sqrt{2}}$ with equation [2] to obtain the modified $u(\tau)$ and $|z|$. Use [11] to find the new value of $\mathrm{j}(\tau)$ and plug into [24] to locate the new value of τ. In this example; $\tau=0.249329 \ldots .+1.86086518 \ldots i$ and the octagonal equation is solved with $u(\tau)$ and provided by the root $|z|=0.107539927 \ldots$ to [23]. As alternative, multiply z by $2 \sqrt{2}$. Then $|u(\tau)|=\frac{2-5\left(\frac{2}{-11+3 \sqrt{69}}\right)^{1 / 3}+\left(\frac{1}{2}(-11+3 \sqrt{69})\right)^{1 / 3}}{3 \sqrt{2}}$ and the octagonal equation is solved with $\tau=\frac{1+\sqrt{-23}}{4}$.
$(a, b, c, d)=(6,3,18,9)$
Solving the q modulus equation gives $z=|u(\tau)|=\frac{1}{4}\left(-\left(\frac{2}{3(9+\sqrt{93})}\right)^{1 / 3}+\frac{\left(\frac{1}{2}(9+\sqrt{93})\right)^{1 / 3}}{3^{2 / 3}}\right)$. Substituting z in [9] with $\mathrm{k}=1$ and $\mathrm{Q}=1$, gives the root $2.271776692 \ldots$ with a root approximation for the polynomial $\mathrm{x}^{9}-8 \mathrm{x}^{6}-$ $512=0$. The discriminant $\mathrm{d}=-2^{72 *} 3^{9 *} 31^{3}$. Using $\tau_{31}=\frac{1+\sqrt{-31}}{4}$, a value of $\left|u\left(\frac{1+\sqrt{-31}}{4}\right)\right|$ is obtained from [20] and the ratio found as $\left|\frac{u\left(\frac{1+\sqrt{-31}}{4}\right)}{z}\right| / z=\frac{2}{\sqrt{\left.\frac{2}{4-22(-47+9 \sqrt{93}}\right)^{1 / 3}+2^{2 / 3}(-47+9 \sqrt{93})^{1 / 3}}}$. Multiply $1 /$ square root of this ratio with equation [2] to obtain the modified $u(\tau)$ and $|z|$. Use [11] to find the new value of $\mathrm{j}(\tau)$ and plug into [24] to locate the new value of τ. In this example; $\tau=0.249329 \ldots .+$
$1.86086518 \ldots i$ and the octagonal equation is solved with $u(\tau)$ and provided by the root $|z|=$ $0.17058195 \ldots$ to [23]. As alternative, multiply z by $\frac{2}{\sqrt{\frac{2}{4-22\left(-\frac{1}{-47+9 \sqrt{93}}\right)^{1 / 3}+2^{2 / 3}(-47+9 \sqrt{93})^{1 / 3}}}}$. Then $|u(\tau)|=$ $\frac{\left(-2\left(\frac{6}{9+\sqrt{93}}\right)^{1 / 3}+2^{2 / 3}(9+\sqrt{93})^{1 / 3}\right) \sqrt{4-22\left(\frac{2}{-47+9 \sqrt{93}}\right)^{1 / 3}+2^{2 / 3}(-47+9 \sqrt{93})^{1 / 3}}}{12 * 3^{1 / 6}}$ and the octagonal equation is solved with $\tau=\frac{1+\sqrt{-31}}{4}$.
$(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(3,3,6,6)$
Solving the q modulus equation gives $z=|u(\tau)|=\frac{1}{4}(-1+\sqrt{5})$. Substituting z in [9] with $k=1$ and $Q=1$, gives the root 1.86358501876 ...with a root approximation for the polynomial $x^{6}-4 x^{3}-16=0$. The discriminant $\mathrm{d}=-2^{20 *} 3^{6 *} 5^{3}$. Using $\tau_{5}=\frac{1+\sqrt{-5}}{4}$, a value of $\left|u\left(\frac{1+\sqrt{-5}}{4}\right)\right|$ is obtained and the ratio found as $\left|\frac{u\left(\frac{1+\sqrt{-5}}{4}\right)}{z}\right| / z=2(1+\sqrt{5})^{1 / 4}$. Multiply $1 /$ square root of this ratio with equation [2] to obtain the modified $u(\tau)$ and $|z|$. Use [11] to find the new value of $\mathrm{j}(\tau)$ and plug into [24] to locate the new value of τ. In this example; $\tau=0.212776948 \ldots+1.18872246 \ldots i$ and the octagonal equation is solved with $u(\tau)$ and provided by the root $|z|=0.30901699437$... to [23]. As alternative, multiply z by $2(1+\sqrt{5})^{1 / 4}$. Then $|u(\tau)|=\frac{1}{2}(-1+\sqrt{5})(1+\sqrt{5})^{1 / 4}$ and the octagonal equation is solved with $\tau=$ $\frac{1+\sqrt{-5}}{4}$.

The q modulus equation can also be used to find the q continued fraction for the other class number 3 discriminants that could not be readily calculated using Proposition 1. Extending the modulus equation to these discriminants requires adding extra terms to [23]. The general equation is shown in [25];

$$
\begin{equation*}
2^{a / 3}|z|^{b / 3}+N * 2^{c / 6}|z|^{d / 3}+M * 2^{e / 6}|z|^{f / 3}-I=0 \tag{25}
\end{equation*}
$$

Where $|z|$ is the q modulus, a, b, c, d, e and f and N, M and I are positive or negative integers.
Proposition 2 - The modulus |z| of the q continued fraction $u(\tau)$, is expressible in radicals for all negative discriminants $1 \bmod 4$ and $3 \bmod 4$ where $q=e^{2 \pi i * \tau}$. The modulus is calculated from the q modulus equation [25] and τ is determined as described in the procedure above. The root of the associated polynomial is obtained from [9] with $k=Q=1$.

Let ($a, b, c, d, e, f, / N, M, I$) represent the constants in [25]. There can be multiple solutions to this equation and each solution is considered separately. An example is given below.
$(a, b, c, d, e, f, / N, M, I)=(-3,3,2,1,4,-1, /-1,1,5)$ for $d=-83$
Solving the q modulus equation[25] gives two roots, $z=|u(\tau)|=\frac{2}{3}\left(7-\frac{10}{(-46+3 \sqrt{249})^{1 / 3}}+\right.$ $2(-46+3 \sqrt{249})^{1 / 3}$) and 16 . Substituting the first radical solution z in [9] with $k=1$ and $Q=1$, gives the root 2.8311772 ...with a root approximation for the polynomial $x^{3}-2 x^{2}-2 x-1=0$. The discriminant $d=$ -83 is a class number 3 discriminant. Using $\tau_{83}=\frac{1+\sqrt{-83}}{4}$, a value of $\left|u\left(\frac{1+\sqrt{-83}}{4}\right)\right|$ is obtained and the
ratio found as $\left|\frac{u\left(\frac{1+\sqrt{-83}}{4}\right)}{z}\right| / z$ is calculated. Multiply $1 /$ square root of this ratio with equation [2] to obtain the modified $u(\tau)$ and $|z|$. Use [11] to find the new value of $j(\tau)$ and plug into [24] to locate the new value of τ. In this example; $\tau=0.250004024 \ldots+1.98757645 \ldots i$ and the octagonal equation is solved with $u(\tau)$ and provided by the root $|z|=0.08813102796 \ldots$ to [25]. Following the same procedure for the second solution of $16 ; \tau=-0.250000438 \ldots .+2.206356 \ldots i$ and the octagonal equation is solved with $u(\tau)$ and provided by the root $|z|=16$ to [25]. The procedure shows however that $1 /|u(-0.250000438 \ldots .+2.206356 \ldots i)|=16$. The reason for the inverse is currently unknown since the root $|z|=16$ and not $1 / 16$ satisfies [25]. The reflection of τ across the imaginary axis appears to invert the root.

As another example the representation for $\mathrm{d}=-907$ which was mentioned at the beginning of this chapter is
$(3,3,-1,1,1,-1, / 9,-2,-3)$. The one solution obtained is shown in [26] with its calculated τ value.
[26] $|u(0.2500000069964675+3.027035522597698 i)|=\frac{1}{12}\left(-17-\frac{2495}{(66943+2712 \sqrt{2721})^{1 / 3}}+(66943+2712 \sqrt{2721})^{1 / 3}\right)$
Substituting this result into [9] with $k=Q=1$, results in the real root of $x^{3}-5 x^{2}+x-2=0$ as expected. Note that for class 3 discriminants the ratios found above cannot be converted to simple radical form using $\frac{1+\sqrt{-d}}{4}$ (see next section below). A cusp appears about the discriminant $\frac{1+\sqrt{-d}}{4}$. It is also noted that $u(\tau)^{8}-$ 1 times its conjugate is not exactly equal to 1 unless the discriminant is exactly $\frac{1+\sqrt{-d}}{4}$.

As found in these 5 examples the calculated value for τ remains in the upper complex plane and maps $u(\tau)$ to the octahedron projected on the complex plane. It would be interesting to find if a rotational matrix exists to transform the complex quadratic fields $\frac{1+\sqrt{-d}}{4}$ to the value found for τ. Mathematica provides the tools to express the q modulus equation from the octic q continued fraction in radical form for a variety of quadratic fields.

Irreducible polynomials and Adjunction

In the analysis above, many of the roots to $|u(\tau)|$ and its associated root $U(\tau)$ from equation [9] above are roots of polynomials with order $n<5$. In many cases as shown in the Table above, radical solutions can be found. Except for $\mathrm{d}=-23$ and $\mathrm{d}=-31$ the class number 3 discriminants resulted in values of | $\left.u\left(\frac{1+\sqrt{-d}}{4}\right) \right\rvert\,$ which could not be roots of a polynomial of order less than 5 for any value of k and Q . However, we know that all the class number 3 discriminants are cubic polynomials. For this reason, a numerical method was used to find the nome q for which the value of $\left|u\left(\frac{1+\sqrt{-d}}{4}\right)\right|$ could be found in radical notation for a known irreducible polynomial. The result as demonstrated in equation [26] for $\mathrm{d}=$ -907 showed that the quadratic needed to solve $\left|u\left(\frac{1+\sqrt{-907}}{4}\right)\right|$ was not $\frac{1+\sqrt{-907}}{4}$ but the complex number $0.2500000069964675 . .+3.027035522597698 . . i$. This resulted in the root of the correct irreducible polynomial but does not provide the true value for $u\left(\frac{1+\sqrt{-907}}{4}\right)$ and its modulus. (The value of the LHS
of equation [26] is 0.0172195640049 ... but $\left|u\left(\frac{1+\sqrt{-907}}{4}\right)\right|=0.000014613695463$.. a 1200 - fold difference in value!

As indicated above we seek a radical form of $|u(\tau)|$ for which the complex number $u(\tau)^{8}-1$ times its conjugate is exactly unity. In many cases this is difficult if the value of U is a root of a polynomial of order >4 and the polynomial is irreducible. This is expressed by the Abel-Ruffini theorem that the general polynomial of degree n greater or equal to 5 is not solvable by radicals. But, discriminants of class number 3 and many other discriminants result in orders >5 which can be solved by radicals! This was known in Weber's time and many of his entries in Table VI of his treatise demonstrate this.

The Abel-Ruffini theorem applies to general polynomials with rational constant coefficients. In most cases these coefficients are integers and the polynomial cannot be reduced to a product of polynomials of lesser order. In this situation we are dealing with an integral domain of characteristic 0 and not of a prime p so $m x=0$ only if $m=0$ for all integers x. If the field of coefficients is extended by a radical field, then any radical subfield containing the integer coefficients (squares) can be divided by the radical field. We indicate this by allowing radical coefficients to a general (monic) polynomial $x^{n}+r_{1} x^{(n-1)}+\ldots . . r_{n}=0$. The x values are said to be algebraic integers over this field containing r_{n}. The splitting of the polynomial into multiple rational polynomials by the adjunction of a radical \sqrt{R} may provide a solution to polynomials of order greater than 5.

Example $d=-65$.
A calculation of $\left|u\left(\frac{1+\sqrt{-65}}{4}\right)\right|$ from equation [2] results in an algebraic integer which is a root approximation to an order 35 polynomial according to Mathematica. Using equation [9] above with $\mathrm{k}=2$ and $Q=1 / \sqrt{2}$ the resulting value U is a root of the polynomial $1-8 x+12 x^{2}+8 x^{3}-27 x^{4}+8 x^{5}+12 x^{6}-$ $8 x^{7}+x^{8}=0$. This polynomial is irreducible in the integers. We seek a splitting field that can split the equation into a product of two fourth order equation. The numerical solutions provided by Mathematica are four real solutions $z_{1}=U, z_{2}, z_{3}$ and z_{4} and two complex solutions with their conjugates. It is found by trial and error that

$$
\begin{equation*}
\left(z-z_{1}\right)^{*}\left(z-z_{2}\right)^{*}\left(z-z_{3}\right)^{*}\left(z-z_{4}\right)=z^{4}-4 z^{3}-r_{1} z^{2}-4 z-1=z^{4}-4 z^{3}-(2+\sqrt{65}) z^{2}-4 z-1 \tag{27}
\end{equation*}
$$

This fourth order equation can be solved to provide a radical solution to the root U. Substituting this root into [10] gives the desired result:

$$
\begin{equation*}
\left|u\left(\frac{1+\sqrt{-65}}{4}\right)\right|=\frac{2 * 2^{3 / 4}}{\left(2+\sqrt{8+\sqrt{65}}+\frac{\sqrt{(2072+257 \sqrt{65})(4+\sqrt{8+\sqrt{65}})}}{(8+\sqrt{65})^{5 / 4}}\right)^{3 / 2}} \tag{28}
\end{equation*}
$$

The method can be used to add missing values to Weber's Table in reference 4. For discriminants 1 and 3 mod 4 less than 100, all but four discriminants can be solved. Alternate methods or further research on $d=47,71,79$ and 89 is required. Although 47 and 71 are listed in Weber's table, the $5^{\text {th }}$ order and $7^{\text {th }}$ order polynomials, respectively could not be reduced. The two discriminants 79 and 89 are polynomials of order 5 and 12 respectively.

For class number 3 discriminants the resulting U are always roots to a ninth order polynomial. Unfortunately, the radical solutions are quite unwieldy but accurate. I close this chalkboard with an example.

Example d = -59.
A calculation of $\left|u\left(\frac{1+\sqrt{-59}}{4}\right)\right|$ from equation [2] results in an algebraic integer which is a root approximation to an order 9 polynomial according to Mathematica. Using equation [9] above with $\mathrm{k}=1$ and $Q=1$ (these values are used for all class number 3 discriminants) the resulting value U is a root of the polynomial
$-8+16 x-8 x^{2}+4 x^{3}-8 x^{4}+4 x^{5}-2 x^{6}+4 x^{7}-4 x^{8}+x^{9}=0$. This polynomial is irreducible in the integers. We seek a splitting field that can split the equation into a product with a third order equation. The numerical solutions provided by Mathematica are one real solutions $z_{1}=U$, and four complex solutions z_{2}, z_{4}, z_{6} and z_{8} with their conjugates z_{3}, z_{5}, z_{7} and z_{9}. It is found by trial and error that

$$
\begin{equation*}
\left(z-z_{1}\right)^{*}\left(z-z_{6}\right)^{*}\left(z-z_{7}\right)=z^{3}-r_{1} z^{2}+r_{2} z-2 \tag{29}
\end{equation*}
$$

This third order equation can be solved to provide a radical solution to the root U once a radical form for r_{1} and r_{2} are found. These numbers always are solutions to another third order equation. I find $r_{1}=$ $\operatorname{root}\left[-16-4 x-4 x^{2}+x^{3}\right]$ and $r_{2}=\operatorname{root}\left[-8-4 x^{2}+x^{3}\right]$ Substituting the root U in radical form into [10] gives the desired result in nested radical form:
[30]

$$
\left|u\left(\frac{1+\sqrt{-59}}{4}\right)\right|=
$$

$2 /\left(\int_{9}^{1}\left(4+2^{2 / 3} \mathbf{R}^{1 / 3}+2^{2 / 3} \mathbf{S}^{1 / 3}\right)+\right.$

$$
\left(-435+9 * 2^{2 / 3} W^{1 / 3}+36 T^{1 / 3}+9 * 2^{2 / 3} Y^{1 / 3}+2 * 2^{2 / 3} S^{1 / 3}-8 * 2^{1 / 3} S^{2 / 3}+36 V^{1 / 3}+9 * 2^{2 / 3} Z^{1 / 3}+9 * 2^{2 / 3} \mathrm{X}^{1 / 3}-4 R^{2 / 3}\left(2 * 2^{1 / 3}+S^{1 / 3}\right)+2 R^{1 / 3}\left(2^{2 / 3}-2 S^{2 / 3}\right)\right)^{2}+
$$

$$
\left.\left.\left.\left.4\left(-\frac{1}{9}\left(4+2^{2 / 3} R^{1 / 3}+2^{2 / 3} S^{1 / 3}\right)^{2}+2\left(2+T^{1 / 3}+V^{1 / 3}\right)\right)^{3}\right)\right)\right)^{1 / 3}\right)_{+}^{1}-\left(\int_{9}^{1}\left(4+2^{2 / 3} R^{1 / 3}+2^{2 / 3} S^{1 / 3}\right)^{2}-2\left(2+T^{1 / 3}+V^{1 / 3}\right)\right)
$$

$$
\left\lvert\,\left(\begin{array}{l}
4 \\
\left.-\left(-435+9 * 2^{2 / 3} W^{1 / 3}+36 T^{1 / 3}+9 * 2^{2 / 3} Y^{1 / 3}+2 * 2^{2 / 3} S^{1 / 3}-8 * 2^{1 / 3} S^{2 / 3}+36 V^{1 / 3}+9 * 2^{2 / 3} Z^{1 / 3}+9 * 2^{2 / 3} X^{1 / 3}-4 R^{2 / 3}\left(2 * 2^{1 / 3}+S^{1 / 3}\right)+2 R^{1 / 3}\left(2^{2 / 3}-2 S^{2 / 3}\right)\right)^{2}+4\right)
\end{array}\right.\right.
$$

$$
\left.\left.\left.\left.\left(--\left(4+2^{2 / 3} R^{1 / 3}+2^{2 / 3} S^{1 / 3}\right)^{2}+2\left(2+T^{1 / 3}+V^{1 / 3}\right)\right)^{3}\right)\right)\right)^{1 / 3}\right]^{3}
$$

with

$$
\begin{aligned}
& R=(43-3 \sqrt{177}) \quad S=(43+3 \sqrt{177}) \quad T=(44-3 \sqrt{177}) \quad V=(44+3 \sqrt{177}) \\
& W=(3485-261 \sqrt{177}) \quad X=(3485+261 \sqrt{177}) \quad Y=(299-3 \sqrt{177}) \quad Z=(299+3 \sqrt{177})
\end{aligned}
$$

All class number 3 discriminants are solvable by the equations used in this example.

1. W. Duke, Continued Fractions and Modular Functions, Bulletin of the American Mathematical Society, 42 (2005), 137-162.
2. T. Piezas, Ramanujan's Continued Fractions and the Platonic Solids, https://sites.google.com/site/tpiezas/0015.
3. S. Ramanujan, Notebooks (2 volumes). Tata Institute of Fundamental Research, Bombay, 1957.
4. H. Weber, Table VI from Lehrbuch der Algebra, Elliptische Funktionen und Algebraische Zahlen, Braunschwieg, Germany, 1908.

Richard Turk
12/4/2018

